Using bacteria to create a water filter that kills bacteria

Srikanth Singamaneni and Young-Shin Jun's research on a new water-filtering membrane was the cover story of the Jan. 2, 2019 issue of Environmental Science & Technology

Srikanth Singamaneni and Young-Shin Jun's research on a new water-filtering membrane was the cover story of the Jan. 2, 2019 issue of Environmental Science & Technology.

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy of Engineering's Grand Challenges. Engineers at Washington University in St. Louis have designed a novel membrane technology that purifies water while preventing biofouling, or buildup of bacteria and other harmful microorganisms that reduce the flow of water, and they used bacteria to build such membranes.

Srikanth Singamaneni, professor of mechanical engineering & materials science, and Young-Shin Jun, professor of energy, environmental & chemical engineering, and their teams blended their expertise to develop an ultrafiltration membrane using graphene oxide and bacterial nanocellulose that they found to be highly efficient, long-lasting and environmentally friendly. If their technique were to be scaled up to a large size, it could benefit developing countries where clean water is scarce.

The results of their work were published as the cover story in Environmental Science & Technology Jan. 2, 2019.

Biofouling accounts for nearly half of all membrane fouling and is very challenging to remove completely. Singamaneni and Jun have been tackling this challenge together for nearly 5 years and have previously developed other membranes using gold nanostars, but wanted to design one that used less expensive materials.

Their new membrane begins with feeding Gluconacetobacter hansenii bacteria a sugary substance so that they form cellulose nanofibers when in water. The team then incorporated graphene oxide (GO) flakes into the bacterial nanocellulose while it was growing, essentially trapping GO in the membrane to make it very stable and durable. After GO is incorporated into the membrane, the membrane is treated with base solution to kill Gluconacetobacter. During this process, the oxygen groups of GO are eliminated, making it reduced graphene oxide. When the team shone sunlight onto the membrane, the reduced graphene oxide flakes immediately generated heat, which is dissipated into the surrounding water and bacteria nanocellulose.

Ironically, the membrane created from bacteria also can kill bacteria.

"If you want to purify water with microorganisms in it, the reduced graphene oxide in the membrane can absorb the sunlight, heat the membrane and kill the bacteria," Singamaneni said.

Singamaneni and Jun's team exposed the membrane to E. coli bacteria, then shone light on the membrane's surface. After being irradiated with light for just 3 minutes, the E. coli bacteria died. The team determined that the membrane quickly heated to above the 70 degrees Celsius required to deteriorate the cell walls of E. coli bacteria. While the bacteria are killed, the researchers had a pristine membrane with a high quality of nanocellulose fibers that was able to filter water twice as fast than commercially available ultrafiltration membranes under a high operating pressure.

When they did the same experiment on a membrane made from bacterial nanocellulose without the reduced graphene oxide, the E. coli bacteria stayed alive.

"This is like 3-D printing with microorganisms," Jun said. "We can add whatever we like to the bacteria nanocellulose during its growth. We looked at it under different pH conditions similar to what we encounter in the environment, and these membranes are much more stable compared to membranes prepared by vacuum filtration or spin-coating of graphene oxide."

While Singamaneni and Jun acknowledge that implementing this process in conventional reverse osmosis systems is challenging, they propose a spiral-wound module system, similar to a roll of towels, that could be equipped with LEDs or a type of nanogenerator that harnesses mechanical energy from the fluid flow to produce light and heat, which would reduce the overall cost.

The McKelvey School of Engineering at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 96.5 tenured/tenure-track and 33 additional full-time faculty, 1,300 undergraduate students, 1,200 graduate students and 20,000 alumni, we are working to leverage our partnerships with academic and industry partners — across disciplines and across the world — to contribute to solving the greatest global challenges of the 21st century.

Jiang Q, Ghim D, Cao S, Tadepalli S, Liu K-K, Kwon H, Luan J, Min Y, Jun Y-S, Singamaneni S. "Photothermally Active Reduced Graphene Oxide/Bacterial Nanocellulose Composites as Biofouling-Resistant Ultrafiltration Membranes." Environmental Science & Technology. Published online Sept. 14, 2018; print Jan. 2, 2019. DOI: 10.1021/acs.est.8b02772

This research was supported by funding from the National Science Foundation Environmental Engineering Program, the Air Force Office of Scientific Research (Award No. FA9550-15-1-0228); and the McDonnell Academy Global Energy and Environmental Partnership.